
~ Pergamon

Int. J. Solids Structures Vol. 33, No.8. pp. 1175-1189, 1996
Copyright © 1995 Elsevier Science Ltd

Printed in Great Britain. AU riabll RtCrvcd
llOW-7683/% SI5.00 + .00

ELASTIC EQUILIBRIUM OF A MEDIUM
CONTAINING A FINITE NUMBER OF ALIGNED

SPHEROIDAL INCLUSIONS

V. 1. KUSHCH
Institute for Superhard Materials, National Academy of Sciences, 254074 Kiev, Ukraine

(Received 20 July 1994; in revisedform 3 March 1995)

Abstract- The strict solution in series is obtained of the elasticity theory problem for an unbounded
domain containinl some aligned spbaoidal inlilom0JC1leities under uniform far-field loads. The
essence of the method used is the repraentation of the displacement field in a multiply-connected
domain as a sum of general solutions for corresponding single-connected domains. Each term of
this sum, in tum, is expanded into series on vectorial partial solutions of Lame's equation in a local
spheroidal basis. In order to satisfy euctly all interfacial boundary conditions, the fe-expansion
formulae (addition theorems) for ell.fenuU partial s~tiODS are used. As a result, the primary
boundary-value problem ofelasticity theory is reduced to an infinite set ofIinear aljebraic equations.
The convergence rate ofthe propOsed solution procedure is evaluated numerically. Some numerical
results demonstrating tile infliuenCCl on stress distribution of material properties, spatial position of
inclusions and external load are presented.

I. INTRODUCfION

The modern advanced particle composites with superior mechanical properties are, as a
rule, strongly heterogeneous materials with high volume content of the dispersed phase.
The global behaviour of these composites is strongly influenced by the spatial distribution
and interaction among the mkroconstituents. To estimate this interaction (and, therefore,
material properties) accurately, a model which effectively represents the composite micro­
structure and a rigorous method to analyse corresponding model problems are required.
The appropriate model of such composites is the infinite region containing some inhomo­
geneities. In order to determine the response of this model the boundary-value problem for
a multiply-connected domain must be solved.

The number of publications where three-dimensional problems for a multiply-con­
nected body were considered is rather limited. For the case of spherical inhomogeneities
there are some papers containing the rigorous solutions. The axisymmetrical two-sphere
problems were treated in terms of bispherical coordinates by Sternberg and Sadowsky
(1952) for cavities and by Shelley and Yu (1966) for rigid inclusions. The solution for
elastic spheres was obtained by Chen and Acrivos (1978). Their analysis is based on the
Boussinesq-Papkovich stress function approach and makes use of the "multipole expan­
sion" technique in which the solutions are expanded into series ofspherical harinonics with
respect to the centres of spheres. The same approach was used by Tsuchida et al. (1976),
who solved the problem when the applied field consists of a uniaxial tension in the direction
perpendicular to the line of centres of the cavities. A more general mathematical technique
was applied by Golovchan (1974) to the problem for a space with N arbitrary placed non­
touching spherical inclusions under a general type of loading. The essence of the method
proposed is the representation of the matrix displacement vector as a sum of general
solutions for a single-particle problem. The latter are expressed by series of partial vectorial
solutions of Lame's equation in a spherical basis. The full satisfaction of interfacial boun­
dary conditions is achieved by using the re-expansion formulae for external partial solutions
in a transferred coordinate system (addition theorems) derived by Golovchan (1974). This
procedure leads to an infinite linear algebraic system with normal determinant. Unfor­
tunately, the numerical results confirming the computational effectiveness of the method
are not presented.
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For a more general (ellipsoidal) shape of inhomogeneities only approximate solutions
of the multi-particle problem are known, which are based on Eshelby's solution for a single
inclusion in an unbounded domain (Eshelby, 1959). The method proposed by Robin and
Hwang (1991) uses two assumptions: the original problem for N inhomogeneities can be
represented by N separate problems for a single inhomogeneity; the contributions of the
remaining inhomogeneities to the far field of a reference inhomogeneity are based only on
their average equivalent transformation strains. In the solution obtained in this way the
interfacial conditions are satisfied only approximately. Another approach to this problem
was developed by Hori and Nemat-Nasser (1993). In a pH)posed "double-inclusion" model
the average field quantities are estimated with the aid of a theorem generalizing the Mori­
Tanaka theory.

A more rigorous approach to the problem for a medium containing two ellipsoidal
inhomogeneities has been suggested by Moschovidis and Mura (1975). The fundamental
idea of the method used is the representation of transformation strain within each domain
by a polynomial in Cartesian coordinates. The decomposition of the strain field around
inhomogeneities into a Taylor series reduces the problem to an algebraic system. The
expressions of matrix coefficients include the partial derivatives from potential functions of
complex form. The accuracy of the solution obtained depends on the highest polynomial
degree of the Taylor expansion. Its increase i$ connected with the calculation of higher
derivatives and leads to a considerable complieation of the expressions for matrix
coefficients. It is difficult to estimate the computational effectiveness of the method because
the numerical results are preseated only for far removed inclusions.

The solution of the elasticity problem stated below for a space with a finite number of
aligned spheroidal inclusions is obtained using a method similar to that outlined by Golov­
chan (1974). The necessary mathematical results, namely the vectorial partial solutions of
Lame's equations in a spheroidal basis and the addition theorems for external partial
solutions, are given in Appendices A and B, respectively.

2. MEDIUM WITH A SINGLE INCLUSION

We first consider the simplest problem for an unbounded domain with a single spher­
oidal cavity. We introduce the Cartesian coordinate system (x,y,z) with an origin in the
centre of the spheroid and the corresponding spheroidal coordinates if,~, '1, qJ) (A3) so that
the surface of the cavity coincides with the coordinate surface ~ = ~o. The stresses in a
medium with a cavity are induced by the applied uniform symmetrical remote strain tensor
soo. The surface of the cavity is supposed to be stress-free. We present the displacement
vector in the region ~ ~ ~o in the form

(1)

where r is the radius vector and U(I) is the disturbance caused by the presence of a cavity.
Because for II r II -+ 00 U(l) -+ 0, this series development contains the external solutions (A4)
only:

3 00 I

UI = L L L A}~S~~(r,f),
i=ll=OS=-1

(2)

where A~2 are the constants to be determined.
The expansion of the linear part of eqn (1), on the contrary, contains only internal

solutions (AI). Taking into account the form of the partial solutions

f (I) - I( ) . f( (I) + (I) ) - .( ) •S20 - -2 xex+yey +zeZ> S~I S~,_I - l zey-yez ,

f(s(I) -s(I~ ) = ze +xe,' 2f(s(l) +S(I~ ) = xe -ye .21 2, 1 x _ , ~2 2, 2 x y ,
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2f(sW-S~~~2) = i(xey+yex); 2fsW = i(yex-xey);

f(sW+s\~~,)=zex ; f(sW-s\~~,) = izey ;

fSb3J = ~(2v-I)(xex + yey+zeJ = ~(2v-l)r,

we find after transformations

3 eX) r

u(O) = L L L [A~~8~~(r,f)+bl~sj~J(r,f)],
i=l t=Os=-!

where

b(3) _ f (eX) + eX) + eX)). b(') _ f(2 eX) eX) eX)) .
00 - (2v-l) ell e22 e33' 20 -"3 e33 -ell -e22 ,

bW =b~I~1 =f(ef3-ie'ZU; bW =W~2 =f(efl-e22-2ief2?;

all other b~~ are equal to zero.
According to the problem statement, the stress vector
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(3)

(4)

(5)

on the surface ~ = ~o is equal to zero. In eqn (5), v is Poisson's ratio, jJ. is the shear modulus,
e, = nie;, nl =;;2 = h~fie-i"', n3 = h~rJ and h = (~2 _'1 2

)-1 /2. Taking into account eqn (4),
this condition can be written as

3 eX) /

T,(u(O»)I, = ,. = L L L [A~?T,(8~~)+b~~T,(s~~)].
i=lt=Os=-(

(6)

Thus, we need to calculate eqn (5) for partial solutions. This is fairly straightforward
if we use the properties of the vectorial functions s~~ and s~2 with respect to differential
operators (Kushch, 1995). So, for external solutions we find

(I) _ (t-s+2)! 's-I s-I (t-s)! 's+ I s+ I (t-s+ I)! 's s .
yT,(8 ,s ) - el (t+s)! Q,+ I X,+ I -e2 (t+s+ 2)! Q/+ I X,+ I +e3 (t+s+ I)! Q/+, X,+ I ,

(2) _ (t-s+I)! S_I[(t+S) ,s-I_0J (t-s-I)! s+1
yT,(8 ,s ) - el (t+s-I)! X, t Q, 2~ +e2 (t+s+ I)! X,

[
Q/+I (t+s+l) sJ (t-s)! s [Q/ ~ sJ.

• (t-s) -t- - 2( Q, +e3 (t+s)! X,S -t + 2~""2 Q, ,

T (8(3)) _ (t-s)! s-I {2[V+S(V-I)/t] s
y, Is - e, (t+s-2)! X,-I ( Qt-I

+ (t-s+ I)(Q:-I - ~Q;S-I) + (t+s-I)[I + (t+S)P_(I+ I)]Q/--II }

(t-s-2)! s+1 {2[V-S(V-I)/t]
-e2 (t+s)! Xr-I (t-s-I) ( (t+s)0-1



1178 V. I. Kushch

(t-s-l)! {2(I-V)eS2 (.)
+e3(t+s_l)!X:-1 fe 2 Q:_I+(f-S) Q:-eQ/

+[2(1-V)-C-U+I),s]Q;'_I} Y =f/(2J1.o~h); (7)

where the prime stands for differentiation with respect to the argument. For internal
solutions the formulae are quite similar. By projection of eqn (6) on the orthogonal unit
vectors ej we obtain the scalar equalities

where

3 00 I

L L L [A~~T}~(j)+b}~)f}~(j)] =0, j= 1,2,3,
i=11=05=-(

(8)

the form of expressions T~~(j) and t~~(j) is clear from eqns (7). Finally we decompose each
of the equalities (8) over a full and orthogonal system of scalar harmonics X:. This gives us
a set of linear algebraic equations with unknowns A}~ :

[
p's e ] {2(1-V)S2 e+b(l) p"+b(2)S __,- + _ps +b(3) _ ps

1+I,s I IS t+ 1 2[2 I 1-1.5 t[2 I

- (t+s)(P;'_1 - ep;S_I) + [2(1- v) - C,-I.s]P/}= 0,

t = 1,2, ... , lsi ~ t;

A(I) Q'S-I +A(2) [f+SQ,s_1 + Q~J+A(3) {2[V(f+S+ l)-s]
I-I.s I Is t I 2e 1+I.s (t+l)e

. Q: +(t-s+ 2) (Q::;: : - eQ/;/) + (t+s)[1 +(t+s+ 1){J-(/+2)]Q/-1 }

+b(') p's-I +b(2l[t-S+l p's-I_ P~J+b(3) {2[V(t-:)+S] ps
1+ 1.5 I Is t+ 1 I 2e I-I.s te I

- (t+s-l)(P:-=-i - ep/-=-n + (t-s+ 1)[-1 + (t-SW,_ dP/- 1}= 0,

t=1,2, ... , Is-11~f;

A(I) Q'S+I_A(2)(t_S)[!Q's+I_ (t+s~l)QSJ+A(3) (t-s)1-1.5 I Is t I 2e I 1+I.s
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. {2[V(t-S+ 1)+s] +1 's+ I
(t+l)~ (t+S+l)Q:+Q:+I-~Qt+1

[
P/+

J

t-s SJ (3) {2[V(t+S)-S] s
. t+ 1 - 2[ P, +b'_'.s(t+s+ 1) t( (t-s)P,

t = 1,2,,,,, Is+ 11 ~ t.

Equations (9) can be rewritten in a matrix mode:

TG,(v)A, + TM,(v)b, = 0, t = 1,2, ... ,
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(9)

(10)

where the vector A, includes unknowns Ani-2.s and the vector b, includes values b~~2-i.S'

The structure of matrices TG, and TM, is clear from eqns (9). It follows from eqn (4) that
bt are non-zero only for t = 1. Then, from eqn (10) also A, = 0 for t ~ 2. Thus, the problem
is reduced to the linear system (9) for t = 1, containing six equations. For the parameters
eij given the system (9), and the problem examined therefore has only one solution.

The problem for the space with the spheroidal inhomogeneity is considered in the same
manner. The only difference is the interfacial boundary conditions, where displacements
and normal stresses are supposed to be continuous: .

(11)

where u(l) is the displacement vector within inclusion. Because U(I) is limited in the volume
of inclusion, this series expansion consists only of internal partial solutions:

3 00 I

U(I) = L L L D~?s~?(r,f),
i=ll=OS=-1

(12)

where D~? are the indefinite constants. The substitution of eqns (4) and (12) into eqn (11)
leads us to the system of equations •

UG,(vo)A, + UMt(vo)bt = UMt(vJ )Dt>

TG,(vo)At+ TMt(vo)bt = reTMt(vJ )Dt> (13)

where re = J.tdJ.to,JJ. = J.to, v = Vo for the matrix, J.t = J.th V = VI for the inclusion. The structure
of the matrices UM, and UG I in eqn (13) is the same as that of TMI and TG,. They are
obtained by decomposition of the first condition (11) over ei and X:. Taking into account
(AS), this is not a problem.

By way of some matrix operations, the number of unknowns can be reduced twice.
So, on the one hand, by elimination of D, we find

[reUMt-
1 (VI )UG,(vo) - TM,- J (VI) TG,(vo)]At

+ [reUM;J (vl)UGt(vo)-TM;I(VJ)TGt(vo)]b, = O. (14)

On the other hand, the vectors D t and At are connected by the relation
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D, = [UM; I (VO)UM,(v1)-reTM,-1(vo)TM,(VI)]-1

° [UM,- 1(vo)UG,(vo) - TM,-I (vo)TGI(vo)]A,. (15)

Since b, = 0 for t -:f: 0, then, as in the above case, A, and D, are non-zero only for t = 1.
The solution of the problem considered in the form (14), (15) from a mathematical

. standpoint is fully equivalent to that obtained previously (Eshelby, 1959; Podilchuk, 1967).
The only differences are the use of vectorial partial solutions of Lame's equation and a
matrix form for resolving the algebraic system.

3. MEDIUM WITH N PORES OR INCLUSIONS

We now consider an unbounded domain containing N non-touching aligned spheroidal
cavities with centres Oq, defined by parameters f =.[q, e= e~, q = 1, N. As before, the
stressed state is induced by tensor 600

• The surface of all cavities is supposed to be stress
free. When the elasticity theory problem for a multiply-connected body is under consider­
ation, the question of an appropriate form of solution arises. This question has been studied
in detail by Slobodyanskyj (1954), who has shown that this solution can be found as a sum
of general solutions for corresponding single-connected domains. Therefore, we have

N
u(O) = 6X! ° r+ L: U(q) ,

q = 1

(16)

where u<q) = U(rq,.[q) is the external solution of the form (2) for the infinite region external
with respect to the surface e= e~ and rq is the radius vector of the local coordinate system
OqXqYqZq. This system is introduced so that the OqZq axis coincides with the rotaton axis of
the qth spheroid. Thus, the problem consists of determination of unknown constants
A~?(q) in the expression of the matrix displacement vector u(O) :

N 3 oc I

u(O) = 6 00
° r l + L: L: L: L: A~?(q)S~?(rq,fq)

q = 1 j = 1 ,= 0 s = -I

from boundary conditions

Tdu(O»I~ = ~o = 0, q = 1,2, ... ,N.
q q q

(17)

(18)

Because these conditions are writt~n in a local coordinate system, the displacement vector
and the corresponding stress vector must be transformed to this local basis. To complete
such transformation we will use the addition theorems for external solutions of Lame's
equation (Appendix B). Considering that rq = Rqn+rn, where R qn is the vector connecting
points Oq and Om we obtain, after change of summation order,

3 00 I

u(O) = 6
00 °R 1n + L: L: L: [A~~(n)S~~(rn,f,,)+(a~~(n)+b~~)s~~(rn,j;')], (19)

;=1/=05=-/

where

3 ao k N

a~~)(n) = L L: L L:' 11V,1}') (Rqn,fq,fn)AlIt)(q) .
j = I k = 0 1= -k q = 1

(20)

The stroke over the internal sum sign denotes the absence of a term with q = n.
The constant vector 6 00 oRIn determining the transfer of a whole solid does not con­

tribute to the total stress tensor. For other terms, by substitution of eqn (19) into eqn (18)
we obtain the expression
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3 00 I

T~Ju(O»)k=~~ = L L L {A~~(rr)TdS~~(rrr,J,.)]+(a~~)(rr)+b~2)T~JS~2(rnoJ,.)]}le.=e~ = 0,
i=lt=OS=-f

(21)

similar to eqn (6). The application of the standard transition procedure stated above gives
us the set of algebraic equations

(22)

where the vector a~rr) has the same structure as hI and contains terms a~t(2)-i,s' The vector
a~n) can be rewritten in the form

00 N
(rr) _" ", (R I' I')A(q)·a, - '-- '-- 17kl qrr,J q,J rr k'

k=Oq=1
(23)

this is merely a matrix form ofeqn (20). By substitution ofeqn (23) into eqn (22) we obtain
an infinite system of linear algebraic equations with unknowns Mq) :

00 N
A(n) + [TG(n)] - I TM(n) " "'., (R I' I')A(q) =

t ttL" L.- ~,k/ qn,J q,J n k
k=Oq=1

The analysis of coefficients of matrices TG~n), TMl,rr) and '1kl shows that eqn (24) is a
system with normal determinant. Hence, the solution of eqn (24) can be obtained by either
a reduction method or a method ofsuccessive approximations. The exactness ofthe solution
obtained is defined by the maximum value of the index t retained in eqns (17)-(24).
Note that with the number of cavities increased, the dimension of system (24) increases
proportionally. Therefore, from the standpoint of rational arrangement of computations,
it is advisable to use the iterative procedure with preliminary calculation of matrices TG~rr),

TM~rr) and '1kl for solving eqn (24). The calculation of matrix coefficients is the most time­
consuming part of the computational algorithm, but it is carried out only once. The
following course of calculations consists of the refinement of values Akq

) by way of conse­
quent satisfaction of boundary conditions on each of the cavities:

(25)

where A~~? is the value of the vector A~n) on the ith iteration, A~~ is the solution of the
problem for a space with a single cavity [a~~ = 0 in eqn (25)]. The results of calculation (in
particular, presented below) show that the iterative procedure (23)-(25) converges rapidly
enough. Even for nearly-touching cavities when II Rizil = 1.05(/1 ~1 +Iz~) the number of
iterations Imax necessary for calculation of A~~)(n) with relative error B = 10-4 does not exceed
20.

The stress determination in a medium with N spheroidal inclusions under conditions
of full mechanical contact on interfaces,

where

SAS 33-8-H

q = 1,2, ... ,N, (26)
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3 x' t

" " "D(i)(q)S(l} (r I' )L.. f..J L... (5 Is q,J q
i=1/=Os==-(

(27)

is the displacement vector within the qth inclusion and D~~(q) are the indefinite constants, is
carried out in the same way. In order to satisfy the boundary conditions one must transform
eqn (19) to the qth local spheroidal basis and then substitute together with eqn (27) in eqn
(26). The following decomposition of vectorial equalities obtained over ej by X: gives us N
systems of form (14), where A, must be replaced on A~n) and b, on b,+ a~n). To solve this
algebraic system, the iterative procedure (25) can also be used. Note that resolving the
algebraic system obtained by Rodin and Hwang (1991) has a dimension 6N; this cor­
responds to only unknowns with t = 1 being kept in the above stated solution.

4. NUMERICAL RESULTS

The model considered has many parameters. They are the number of inclusions, their
size, shape, properties and spatial position, and external load. A complete parametric study
of this model is not the subject of this article. We restrict our analysis to only the few
simplest examples providing, however, the possibility of estimating the computational
effectiveness of the proposed method. They also allow us to establish some typical pecu­
liarities of the stress distribution caused by interaction of neighbouring inhomogeneities.
We consider an unbounded elastic medium containing two equal spheroidal inhomo­
geneitiesf] =f2' ~~ = ~~ with centres on axis Ox: Y\2 = Z\2 = 0 (Fig. 1). We put flo = 1,
Vo = 0.3 and VI = V2 = 0.2. The aspect ratio of spheroids is Pzlpx = ~g;~1 = 2, where
Px = f(and pz = R are the semi-axes of the spheroid. The variable parameters are the shear
moduli of inclusions III and 1l2, the distance between centres II Rl2 11 = X\2 and the far-field
load tensor. Note that it is an essentially three-dimensional problem for any loading type.

It is of interest to investigate the convergence of solution (17)-(24) when the maximum
value t = tmax increases as well as the convergence of iterative procedure (25), because this
allows us to estimate the degree of accuracy of numerical results presented here. So, in
Table 1 the values Ah1J<I) as a function of tmax and imax are presented. They are calculated
for parameters III = 112 = 0, X\2 = 2.IP.n 833 = [) (uniaxial deformation along the Oz axis).
It is seen that even for the case of nearly placed cavities the convergence rate is rapid
enough: for tl1l3.X ~ 7 the first four valid digits of Ah~<l) are not varied. The values of stress
(j"~O) (tmax) at points A and B (Fig. 1) for Xl2 = 2.1pn 2.2px and 2.5px are presented in Table
2. As expected, the series for stresses converges more slowly, especially when inhomo­
geneities are nearly placed. Hbwever, in this case also for tmax = 15 the deviation of (j"~O)

from the limit value does not exceed 1% at the point of maximum concentration (point B).
For other points on the surface ~ I = ~~ and when X I2 increases the convergence is more
rapid. The numerical results presented below were calculated for tmax = 15 and Imax = 25.

Fig. I. Coordinates in the two-particle test problem.
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Table I. Convergence of AhIJ(I) (tmaX' I max) for parameter values
III = 112 = 0, Xl2 = 2.lpx, efJ = (j (uniaxial deformation along the Oz axis)

tmax

lmax 3 5 7 9 11

I 5.691 5.691 5.691 5.691 5.691 5.691
3 5.839 5.956 5.984 5.990 5.990 5.990
5 5.837 5.932 5.953 5.960 5.963 5.963
7 5.837 5.929 5.944 5.949 5.952 5.952
9 5.837 5.929 5.940 5.945 5.947 5.948

II 5.837 5.929 5.940 5.943 5.944 5.945
13 5.837 5.929 5.940 5.942 5.943 5.943
15 5.837 5.929 5.940 5.941 5.942 5.942
17 5.837 5.929 5.940 5.941 5.942 5.942
19 5.837 5.929 5.940 5.941 5.941 5.942

Table 2. Convergence of stress u;O)(tmax ) at points A (eIIl = n) and B
(eIIl = 0) on the first cavity surface for X l2 = 2.lp" 2.2px and 2.5px

<Ill = 112 = 0)

X I2 = 2.lpx X I2 = 2.2p, X l2 = 2.5px

tmax B A B A B A

I 4.96 4.96 4.91 4.91 4.81 4.81
3 6.29 4.98 5.97 4.89 5.40 4.67
5 7.35 4.86 6.66 4.77 5.77 4.65
7 7.97 4.77 6.98 4.71 5.80 4.64
9 8.32 4.73 7.12 4.68 5.80 4.64

II 8.51 4.70 7.18 4.67 5.80 4.64
13 8.63 4.69 7.21 4.67 5.80 4.64
15 8.68 4.69 7.22 4.67 5.80 4.64
17 8.70 4.69 7.22 4.67 5.80 4.64

The curves in Fig. 2 show the stress distribution O'~O) /e'f3 on the surface of the first
cavity (<PI = 0, °~ 11>1 ~ n) for 11-1 = 11-2 = 0, e'f3 = fJ. In all pictures the dashed curve I
corresponds to the solution for X l2 = 00 (space with a single cavity), the solid curves 2 and
3 are calculated for X I2 = 2.5px and X l2 = 2.lp" respectively. The stress concentration O'~O)

in the neighbourhood of point B increases when cavities are brought together; so, for
X l2 = 2.lpx it exceeds almost twice the stress at this point for a single cavity. At the same

80

'0 6.0
~
~N

b
enen 4.0
C1l......

(.f)

2.0

0.0 0
11/2 11

Fig. 2. Stress distribution u~O) /e'f3 on the surface of the first cavity due to uniaxial deformation
efJ = lJ of space with two cavities (Ill = 112 = 0).
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3
16.0 n~------,----------,

0.0 +O---.,..----........----.-----l

4.0

III

~ 8.0 t~~~--I--=::::;;:;;:;;;~
~ ------.....

(f)

~ 12.0
-N

b

Fig. 3. Stress distribution (T~O) /e'f3 on the surface of the first cavity due to all-round deformation
e;7 = b of space with two cavities (Ill = 112 = 0).

time, the stress distribution on the opposite side of the spheroid (point A) is practically
independent of X12. The dependencies O'~O)(eIl!) also show similar behaviour due to the all­
round deformation e'{( = 0 plotted in Fig. 3. They are calculated for the same parameters
as in the previous case.

The next two pictures concern the medium with two inclusions, J.I.! = J.l.2 = 10. The
curves in Fig. 4 represent the matrix stress distribution O'~O) at the interface ~ I = ~?,

8'(; = O. The analogous curves for O'~O) are plotted in Fig. 5. Similarly to the case of cavities,
the stress concentration in a zone between inclusions grows significantly when X12 decreases.
SO, O'~O) at the point B for X!2 = 2.lpx (curve 3) exceeds more than twice the value calculated
for XI2 = 00 (curve 1). The analogy with the case of cavities also becomes apparent in the
localization ofdisturbance caused by interaction on the half-surface - n/2 ~ eIl1~ n/2. The
stresses on the opposite side of the inclusion are only slightly influenced by the presence of
a second inclusion.

The investigation of the interaction between hard inclusion and cavity is of interest
because this situation is typical for many composites. So, the stress O'~O) (ell!) distribution
on ~ I = ~? (Fig. 6) corresponds to parameter values J.l.1 = 10, J.l.2 = 0 and 811 = 0 (defor­
mation along the Ox axis). It can be seen that the neighbouring cavity decreases O'~O) at the
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~
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III
(I) 8.0
Q).........

(f)

4.0 -to---~---1\.j-/-2---r-----1rr

¢
Fig. 4. Stress distribution ~O)/e'f3 on the interface e, = e? due to all-round deformation e;'f = b of

space with two inclusions (Ill = 112 = 10).
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Fig. 5. Stress distribution 11~0)Is;;, on the interface ~, = ~? due to all-round deformation s;;' = {) of

space with two inclusions (tI, = tl2 = 10).
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Fig. 6. Stress distribution I1~O) Ie;;, on the interface ~, = ~? due to uniaxial deformation ef, = {) of
space with inclusion and cavity (tI, = 10, tl2 = 0).

point B to almost zero, whereas for a single inclusion the stress at this point has a maximum.
The stresses for CI>] > nl2 also decrease but not so significantly.

The problem for a multi-particle model, when instead of strain tensor (;00 the stress
tensor U

OO is given, can be examined in the same manner. Table 3 contains the values of
u~O) (CI>]) on the cavity equator (~I = 0 and CI>( = n) due to uniaxial tension along the Oz
axis U3"3 = I of a space with two cavities (p( = J.l.2 = 0). The analogous results for utO) (CI>()

Table 3. Stress 01°) dependence upon distance
between cavities due~io uniaxial tension 113'3 = 1 of a

space with two cavities CJl, = tl2 = 0)

P'/Px = 1.2 P'/Px = 2.0

X'2 <Il, =0 <Il, = It <Il, =0 <Il, =It
Px

CX) 1.84 1.84 1.44 1.44
3.0 1.85 1.85 1.50 1.45
2.5 2.04 1.86 1.68 1.46
2.3 2.32 1.87 1.87 1.46
2.1 3.18 1.88 3.27 1.47
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Table 4. Stress u~O) dependence upon distance
between cavities due to uniaxial tension U22 = I of a

space with two cavities (Il, = 112 = 0)

p,!p, = 1.2 p)p, = 2.0

X'2 cI>, = 0 cI>, =11' cI>, =0 cI>,=1!
p,

00 2.17 2.17 2.48 2.48
3.0 2.18 2.18 2.52 2.51
2.5 2.39 2.20 2.88 2.54
2.3 2.75 2.21 3.43 2.56
2.1 3.94 2.23 5.22 2.61

Table 5. Stress u~O) dependence upon distance
between inclusions due to uniaxial tension ur, = I of

a space with two inclusions (Il, = 112 = 100)

p)p, = 1.2 p,/p, = 2.0

X l2
cl>l =0 cI>, =11' cI>, =0 cl>l =11'

P.,

00 1.82 1.82 1.64 1.64
3.0 2.60 1.95 2.52 1.77
2.5 3.85 2.02 3.67 1.83
2.3 5.40 2.06 5.05 1.87
2.1 10.71 2.21 9.38 1.98

due to load 0'22 = I are given in Table 4. The analysis of these data shows a significant
stress concentration in area between closely placed pores. Even greater stress concentration
arises among hard (J1.1 = J1.2 = 100) nearly-touching inclusions (Table 5). For instance, the
coefficient of stress concentration O'~O) induced by uniaxial tension along the Ox axis
(X12 = 2.1px) is equal to 5.87 for pz/Px = 1.2 and 4.74 for pz/Px = 2.0. To estimate the
macroscopic properties (in particular, brittle strength) ofcomposites properly, these effects
must be taken into account.

5. CONCLUSIONS

The proposed rigorous method to solve the boundary-value problems of elasticity in
a multiply-connected domain with spheroidal boundaries is simple and effective from a
computational standpoint. It provides a high accuracy of solution and can be used to
analyse a variety of multi-particle model problems of composite mechanics. In this way
both disordered and periodic structures can be studied with a full account of interaction
effects. In the same manner the problems for finite multiply-connected domains constrained
by spheroidal boundaries, e.g. the double-inclusion model (Hori and Nemat-Nasser, 1993),
can be considered. In this case one must also use the formulae for re-expansion of internal
solutions through internal ones and of external solutions through external ones (Kushch,
1995).

In this paper we discussed only the case of aligned spheroidal inclusions. The case of
arbitrary oriented inhomogeneities will be treated in a subsequent paper.
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APPENDIX A. VECTORIAL PARTIAL SOLUTIONS OF LAME'S EQUATION IN A
SPHEROIDAL BASIS

The internal solutions (constrained at II r II ~ 0) are

s:~) = tel (t-s+ I)f,-' +e2(t+s+ I)f,+' -e,sf,l/(l+ I);

s~;J) = e, [-(x-iy)D2f,;/ - (W)2 -1)D,f,+(t-s+ l)(t-s+Z)Ptf,;n

+e2[(x+iy)D j f,';,' - «(0)2 -1)D,f, - (1+S+ 1)(I+s+Z)p,f,:n

+e, [zD,f,+, - «(0)2 D,1; - C,..f.+ ,];

1+5-4v
1 = 0, I,.... lsi <:;: I; P, = (t+ 1)(21+3)' C" = (I+S+ I)(t-s+ I)P,·

In eqns (AI), the following notations are adopted:

(AI)

e, = (ex + ie..)IZ, e2 = (e, - ie,.)/Z, e, = e,; D, = (818x-i8/8y), D2 = (8/8x+ i818y), D, = 8/8z,

(AZ)

where f, = [(t-s)II(t+s)l] P;«)X;(If,.-p) are the internal partial solutions of Laplace's equation in spheroidal
coordinates (f, (, If, rp) defined as

X;(If,rp) = P;'(If) exp (is.-p) are the scalar spherical harmonics and P; are the associated Legendre functions of first
kind. The equalities (A3) at Re(f) > 0 describe the family of confocal prolate spheroids withinter·foci distance
Z/ The solutions introduced herein are written in the prolate-spheroidal basis. In the case of an oblate spheroid
one must replace (on i~ and/on (-if) in eqn (AI) and all the following formulae.

The external solutions (constrained at II r II ~ (0) are:

S;;) = tel (t+S)F;'-1 +e2(t-s)F;+' +e,sF;']/I;

S:;) = e, [- (x- iy)D2F;'~i - «(0)2 -I)D, F; + (I+S)(I+S-I)P_u+ 'IF;~n

+e2[(x+iy)D,F,':/ _«(0)2 -1)D2F:-(I-s)(I-S-I)P_u+ 'IF::n

+e,[zD,F,'_1 - «(0)2 D,F;' -C-U+ '1.,F;'-11;

1 = 0, I, ... ; lsi <:;: t, (A4)

where F;' = [(t-s)!/(t+s)!] (r,«()X;(If,.-p) are the external solutions of Laplace's equation in spheroidal coordinates
and Q; are the associated Legendre functions of the second kind. It is easy to see that eqns (A4) can be obtained
from eqns (AI) by replacing the index t with - (t+ I) and F-(t+ ,) with F,'. The functions (AI) and (A4) are
sufficient to solve in series the boundary-value problems for a single-connected body with a spheroidal boundary.

To satisfy the boundary conditions on the spheroidal surface ( = (0 the components of the displacement
vector must be expanded over scalar harmonics X;. For external partial solutions such expansions have the form
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(II _ (t-s+2)! ,_1,_1 (t-s)! ,+ I HI (t-S+ I)! " .
St, -e l (t+S)! Q,+IX,+I-e2 (t+s+2)!Q1+IX,+I+e3(t+s+I)!Q,+IX,+I,

5(21 = e (t-S+ I)! (t+s) ns-I,-I +e (t-s-I)! (t-s) Q1+ I 1+ I
I.' I (t+s-I)! t \::1 X, 2 (t+S+ I)! t I X,

(t-S)! s
+e3 (t+S)! ,Q:X:;

(t-S)I
S};I = el (t+S-~)!{- (t-S+ I)~Q:-I + (t+s-I)[I + (t+S)P_ U+,)IQ:=! }x:= I

(t-s-2)! {( 1)~ns+1 ( 1)[1 ( )P IQ1+1 HI+e2 ( )' t-s- ~\::t - t-s- + t-s -(1+ I) I-I X,-I
t+S.

(t-s-I)! , ,
-e3 (t+s-I)! {- (t-S)~Q; - C -(1+ '1•.,Qt- dx,-" (AS)

For internal solutions the expressions are quite similar.

APPENDIX B. ADDITION THEOREMS FOR EXTERNAL SOLUTIONS OF LAME'S
EQUAnON IN A SPHEROIDAL BASIS

Let O,xiYiZi (i = 1,2) be two identically oriented coordinate systems; their radius vectors satisfy the condition
r, = R 12 +r2' Then

3 oc •

Sj:l(r,,f,) = L L L '1:~:II(RI2,f, ,f2)SJ/i' (r2,f2), i = 1,2,3; t = 0, I, ... ; lsi ~ t, (BI)
;=lk=O/=-k

where

(2ltl) _ (~ i) ,-I
'1"." - t + k '1,.'-" k>O; '1:m'I=O;

k > 0; '1~6~&21 = 0;

(31(11 _ / (S J) ,_I
'1lhl -4(I-v)k '+(k-I) +C.- 2.I -C-(I+I).,'1t-I.k-1

+(2k-l) f [Z/'2'1:=~.k+2P+/I(~D2'1:=~.k+2P+I-12(~n2'1:.k~2pJ, k;;.2;
p= 0 I

'1~I~\'1 = (t+s-I)[I + (t+S)P_(I+ 1)1'1:= :'0'
Aji~(~\ = (t-s-I)[I + (t-s)P_u+ 111'1::': :.0'

In eqns (B2), '1:;;1 are the expansion coefficients of the external solution of Laplace's equation:

X; k.

F:(r,,fl) = L L '1:;;I(R 12 ,f,,f2)!.(r2,f2),
k=OI=-k

(
2)'+'+ I 'N _ ' (_1)'-0 (I )2n

'1:.-
1

= a,• ~r L F:;t+2,(R 12 ,f) L -(_)' ~/'
. ,=0 n=O r n.

x (t+k+2r- 2n+ Ij2)r(t+k+r+n+ Ij2)M,kn(f1 ,12),

(B2)

(B3)

(B4)

j> It; [(z) is the gamma function. The series (B3) as well as (BI) converges for the case of two prolate spheroids
in a region constrained by the spheroid ~2 = ~ with inter-foci distance 2h and with centre at the point O2if the
point 0, lies outside the spheroid with semi-axes d2eo and (h~o+It). The geometrical sense of the condition
consists of non-intersection of the spheroid ~2 = ~o and the infinitely thin spheroid with interfacial distance 2/1
centred at point 0,. For other cases (two oblate spheroids, prolate and oblate ones) the convergency condition
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has an analogous sense. This provides the applicability of these results to solve the problems for a multiply­
connected domain with non-touching spheroidal boundaries. Note that a simpler expression exists for ",;;;1. It has
the form

(B5)

where

(t-s)!Y; = --P: (cosO) exp (isrp).
r,+1

The convergency condition of series (B5) is II RIlII < 2f.. Hence, this expression can be used when the indicated
geometrical inequality is satisfied. For Is-II = I+k we must also define ",;=Lk-,' So, for II R,2 11 > 2f., '1~tt+2 has
the form (B5), where at s = 1+2 Y; must be replaced by (x + iy) r,~:. In a general case

2
x (l+k+2r-21+ 5/2)r(t+k+r+ l+3/2)M'k,UI,fJ +1. (X12 +iY,2)MtkO

X Jo F:~Z~1,+,(R'2,h (~!I)' (l+k+2r+3/2)f(I+k+r+3/2)]. (B6)

It should be noted that calculation of the sum on p in the expression for '1}lli I) is not a problem; by replacing the
summation order it reduces to a form similar to eqns (84) and (B5).


